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““
Preface

Like modern commodity analysts, the trade finance bankers of the future are

probably going to be python coders.[1]

— Etienne Amic (2020)

Why this Book?
Technological trends like online trading platforms, open source software and open financial data
have significantly lowered or even completely removed the barriers of entry to the global financial
markets. Individuals with only limited amounts of cash at their free disposal can get started, for
example, with algorithmic trading within hours. Students and academics in financial disciplines with
a little bit of background knowledge in programming can easily apply cutting edge innovations in
machine and deep learning to financial data — on the notebooks they bring to their finance classes.
On the hardware side, cloud providers offer professional compute and data processing capabilities
starting at 5 USD per month, billed by the hour and with almost unlimited scalability. So far, academic
and professional finance education has only partly reacted to these trends.

This book teaches both finance and the Python (http://python.org) programming language from ground
up. It presents all relevant foundations — from mathematics, finance, and programming — in an
integrated but not too technical fashion. Traditionally, theoretical finance and computational finance
have been more or less separate disciplines. This has changed somewhat recently in that
programming classes (e.g. in C++) have become an integral part of Master of Financial Engineering
and similar university programs.

However, mathematical foundations, theoretical finance and basic programming techniques are still
quite often taught independent from each other and only later on combined to computational finance.
This book takes a different approach in that the mathematical concepts — for example, from linear
algebra and probability theory — provide the common background against which financial ideas and
programming techniques alike are introduced. Abstract mathematical concepts are thereby
motivated from two different angles: finance and programming. In addition, this approach allows for
a new learning experience since both mathematical and financial concepts can directly be translated
into executable code that can then be explored interactively.

Target Audience
I have written a number of book about Python applied to finance. My company, The Python Quants
offers a number of live and online training classes in Python for finance. All my books and the
training classes expect the readers and participants to have already some decent background



knowledge in both finance and Python programming or a similar language.

This book starts completely from scratch, just expecting some basic knowledge in mathematics, in
particular from calculus, linear algebra, and probability theory. Although the book material is almost
self-contained with regard to the mathematical concepts introduced, it is recommended to use an
introductory mathematics book like the one by Pemberton and Rau (2016) for references if needed.

Given this approach, the book targets students, academics, and professionals alike who want to learn
(more) about financial theory, data analysis, and the use of Python for computational finance. It is a
perfect introduction to the field on which to build through more advanced books or training
programs offered by The Python Quants and others.

Overview of the Book
The book consists of the following chapters:

Finance and Python

The first chapter sets the stage for the rest of the book. It provides a concise history of finance,
explains the approach of the book take towards using Python for finance, and shows how to set up
a basic Python infrastructure suited to work with the code provided in the book and the Jupyter
notebooks that accompany the book. The first chapter also provides a comprehensive overview of
the literature referenced in the book or useful for a more detailed study of the different topics
covered in the book.

Two State Economy

The chapter covers the most simple model economy in which the analysis of finance under
uncertainty is possible: there are only two relevant dates and two uncertain future states possible.
One sometimes speaks of a static two state economy. Despite its simplicity, the framework allows to
introduce such basic notions of finance as net present value, expected return, volatility, contingent
claims, option replication, arbitrage pricing, martingale measure, market completeness, risk-
neutral pricing and mean-variance portfolios.

Three State Economy

This chapter introduces a third uncertain future state to the model, analyzing a static three state
economy. This allows to analyze such notions as market incompleteness, indeterminacy of
martingale measures, super-replication of contingent claims and approximative replication of
contingent claims. It also introduces the Capital Asset Pricing Model as an equilibrium pricing
approach for financial assets.

Optimality and Equilibrium



In this chapter, agents with their individual decision problems are introduced. The analysis in this
chapter mainly rests on the dominating paradigm in finance for decision making under
uncertainty: expected utility maximization. Based on a so-called representative agent equilibrium
notions are introduced and the connection between optimality and equilibrium on the one hand
and martingale measures and risk-neutral pricing on the other hand are illustrated. The
representative agent is also one way of overcoming the difficulties that arise in economies with
incomplete markets.

Static Economy

This chapter generalizes the previous notions and results to a setting with a finite, but possibly
large, number of uncertain future states. It requires a bit more mathematical formalism to analyze
this general static economy.

Dynamic Economy

Building on the analysis of the general static economy, this chapter introduces dynamics to the
financial modeling arsenal — to analyze two special cases of a dynamic economy in discrete time.
The basic insight is that uncertainty about future states of an economy in general resolves
gradually over time. This can be modeled by the use of stochastic processes, an example of which is
the binomial process that can be represented visually by a binomial tree.



““
1. Finance and Python

Python is now wide-spread across investment banking and hedge funds. Banks

use Python for pricing, risk management and trade management platforms. More

recently, they’ve been reprogramming their trading systems to run off Python

rather than other, clunkier languages.

— efinancialcareers (2016)

1.1. Introduction
This chapter gives a concise overview of topics relevant for the course Finance with Python. It is
intended to provide both the financial and technological framework for the chapters to follow.

1.2. A Brief History of Finance
The history of finance as a scientific field can be divided roughly into three periods according to
Rubinstein (2006):

The ancient period (pre-1950): A period mainly characterized by informal reasoning, rules of
thumb and experience of market practitioners.

The classical period (1950-1980): A period characterized by the introduction of formal reasoning
and mathematics to the field. Specialized models (for example, Black and Scholes (1973) option
pricing model) as well as general frameworks (for example, Harrison and Kreps (1979) risk-
neutral pricing approach) have been developed during this period.

The modern period (1980-2000): This period has generated many advances in specific sub-fields
of finance (for example, computational finance) and has tackled, among others, important
empirical phenomena in the financial markets, such as stochastic interest rates (for example, Cox,
Ingersoll and Ross (1985)) or stochastic volatility (for example, Heston (1993)).

One might add fourth and fifth ones today:

The computational period (2000-2020): This period saw a shift from a theoretical focus in
finance towards a computational one, driven by advances in both hardware and software used in
finance. The paper by Longstaff and Schwartz (2001) — providing an efficient numerical algorithm
to value American options by Monte Carlo simulation — illustrates this paradigm shift quite well.
Their algorithm is computationally demanding in that 100,000s of simulations and multiple
ordinary least-squares regressions are required in general to value a single option only.



The artificial intelligence period (post-2020): Advances in Artificial Intelligence (AI) and related
success stories have spurred interest to make use of the capabilities of AI in the financial domain.
While there are already successful applications of AI in finance (see Hilpisch (2020)), it can be
assumed that from 2020 onwards there will be a systematic paradigm shift towards AI-first
finance.

The evolution of finance over time is characterized by four major trends:

Mathematics: Starting in the 1950s with the classical period, finance has become a more and
more formalized discipline making systematic use of different fields in mathematics, like linear
algebra or stochastic calculus. The mean-variance portfolio (MVP) theory by Markowitz (1952) can
be considered a major breakthrough in quantitative finance if not its starting point itself — leaving
the ancient period characterized mainly by informal reasoning behind.

Technology: The wide-spread availability and use of personal computers, work stations and
servers, starting mainly in the late 1980s and early 1990s, brought more and more technology to
the field. While compute power and capacity in the beginnings were rather limited, they have
reached levels as of today that allow to attack even the most complex problems in finance by sheer
brute force, rendering the search for rather specialized, efficient models and methods — that
characterized the classical and modern periods — often obsolete. The credo has become: “Scale
your hardware and use modern software in combination with appropriate numerical methods.”
On the other hand, modern hardware found in most dorm and living rooms is already that
powerful that even high performance approaches, like parallel processing, can generally be used
on such commodity hardware — lowering the barriers of entry to computational and AI-first
finance tremendously.

Data: While researchers and practitioners alike mainly relied on printed financial information
and data in the ancient and classical periods (think of the Wall Street Journal or the Financial
Times), electronic financial data sets have become more widely available starting in the modern
period. However, the computational period has seen an explosion in the availability of financial
data. High-frequency intraday data sets have become the norm and have replaced end-of-day
closing prices as the major basis for empirical research. A single stock might generate intraday
data sets with well over 100,000 data points every trading day — this number is roughly the
equivalent of 400 years worth of end-of-day closing prices for the same stock (252 trading days per
year times 40 years). Aven more recently, a proliferation in open or free data sets has been
observed which also significantly lowers the barriers of entry to computational finance,
algorithmic trading or financial econometrics.

Artificial Intelligence: The availability of ever more financial data (“big financial data”) makes
the application of AI algorithms — such as those from machine learning, deep learning or
reinforcement learning (see Hilpisch (2020)) — not only possible but also in many cases these days
necessary. Traditional statistical methods from financial econometrics are often not suited



anymore to cope with today’s complexities in financial markets. Faced with non-linear, multi-
dimensional, changing financial environments, AI-based algorithms might often be the only option
to discover relevant relationships and patterns, to generate valuable insights and benefit from
improved prediction capabilities.

1.3. A Four Languages World
Against this background, finance has become a world of four languages:

Natural language: The English language is today the only relevant language in the field when it
comes to published research, books, articles or news

Financial language: Like every other field, finance has technical terms, notions and expressions
that describe certain phenomena or ideas probably not seen in many other ares

Mathematical language: Mathematics is the tool and language of choice when it comes to
formalizing the notions and concepts of finance.

Programming language: As the quote at the beginning of this chapter points out, Python
(http://python.org) as a programming language has become the language of choice in many corners
of the financial industry.

The mastery of finance therefore requires both the student and practitioner to be fluent in all four
languages: English, finance, mathematics and Python. This is not so say that, for instance, English and
Python are the only relevant natural or programming languages. It is rather the case that if you only
have a limited amount of time to learn a programming language, you should most probably focus on
Python — alongside mathematical finance — on your way to mastery of the field.

1.4. The Approach of this Book
How does this book go about the four languages needed in Finance? The English language is a “no
brainer” — you are reading it already. Yet, three remain.

For example, this course cannot introduce every single piece of mathematics in detail that is needed
in finance. Nor can it introduce every single concept in (Python) programming in detail needed in
computational finance. However, it tries to introduce related concepts from finance, mathematics and
programming alongside each other whenever possible and sensible.

For example, take the central concept of uncertainty in finance. It embodies the notion that future
states of a model economy are not known in advance. Which future state of the economy unfolds
might be important, for example, to determine the payoff of a European call option. In a discrete case,
one deals with a finite number of such states, like two, three or more. In the most simple case of two
future states only, the payoff of a European call option is represented mathematically as a random



variable which in turn can be represented formally as a vector  that is itself an element of the vector
space . A vector space is a collection of objects — called vectors — for which addition and scalar
multiplication are defined. One writes for such a vector for example

Here, both elements of the vector are positive real numbers . More concretely, if the
uncertain, state-dependent price of the stock on which the European call option is written is given in
this context by

and the strike price of the option is , the payoff  of the European call option is given by

This illustrates how the notions of the uncertain price of a stock and the state-dependent payoff of a
European option can be modeled mathematically as a vector. The discipline dealing with vectors and
vector spaces in mathematics is called linear algebra.

How can all this be translated into Python programming? First, real numbers are represented as
floating point numbers or float  objects in Python.

1 Defines a variable with name vu  and value 1.5.

2 Defines a variable with name vd  and value 3.75.

3 Looks up the type of the vu  object — it is a float  object.

4 Adds up the values of vu  and vd .

In [1]: vu = 1.5   
 
In [2]: vd = 3.75   
 
In [3]: type(vu)   
Out[3]: float 
 
In [4]: vu + vd   
Out[4]: 5.25

PYTHON
1

2

3

4



Second, one calls collections of objects of the same type in programming usually arrays. In Python, the
package NumPy (http://numpy.prg) provides support for such data structures. The major data structure
provided by this package is called ndarray  which is an abbreviation for dimensional array. Real-
valued vectors are straightforward to model with NumPy .

1 Imports the NumPy  package.

2 Instantiates a ndarray  object.

3 Prints out the data stored in the object.

4 Looks up the data type for all elements.

5 Looks up the shape of the object.

6 Vector addition illustrated.

7 Scalar multiplication illustrated.

This shows how the mathematical concepts surrounding vectors are represented and applied in
Python. It is then only one step further to apply those insights to finance.

In [5]: import numpy as np   
 
In [6]: v = np.array((vu, vd))   
 
In [7]: v   
Out[7]: array([1.5 , 3.75]) 
 
In [8]: v.dtype   
Out[8]: dtype('float64') 
 
In [9]: v.shape   
Out[9]: (2,) 
 
In [10]: v + v   
Out[10]: array([3. , 7.5]) 
 
In [11]: 3 * v   
Out[11]: array([ 4.5 , 11.25])

PYTHON
1

2

3

4

5

6

7

In [12]: S = np.array((20, 5))   
 
In [13]: K = 15   
 
In [14]: C = np.maximum(S - K, 0)   
 
In [15]: C   
Out[15]: array([5, 0])

PYTHON
1

2

3

4



1 Defines the uncertain price of the stock as a ndarray  object.

2 Defines the strike price as a Python variable with an integer value ( int  object).

3 Calculates the maximum expression element-wise.

4 Shows the resulting data now stored in the ndarray  object C .

This illustrates the style and approach of this course:

1. Notions and concepts in finance are introduced.

2. A mathematical representation and model is provided.

3. The mathematical model is translated into executable Python code.

In that sense, finance motivates the use of mathematics which in turn motivates the use of Python
programming techniques.

1.5. Getting Started with Python
The technical prerequisites to follow along with regard to Python programming are minimal. There
are basically two options of how to make use of the Python codes:

Quant Platform: On the Quant Platforn (http://pyesfi.pqp.io) you find a full-fledged environment for
interactive financial analytics with Python. This allows you to make use of the Python code
provided in this book via the browser, making a local installation unnecessary. When you have
signed up for free on this platform, you have been given access automatically to all code and all
Jupyter Notebooks that accompany the book.

Local Python environment: It is also straightforward to install a local Python environment that
allows you to dive into financial analytics and the book code on your own computer. How to do
this is what this section describes.

An easy and modern way of installing Python is by the use of the conda (http://conda.io) package and
environment manager (see conda  Web page).



Figure 1. conda  Web page

The most efficient way to install conda  and a basic Python interpreter is via the Miniconda
(https://conda.io/miniconda.html) distribution. On the Miniconda  download page
https://conda.io/miniconda.html, installer packages for the most important operating systems and
Python versions are provided (see Miniconda  download page).



Figure 2. Miniconda  download page

After having installed Miniconda  according to the guidelines provided for your operating system,
you should open a shell or command prompt and check whether conda  is available. You should get
an output similar to this:

The next step is to create a new Python environment as follows (and to answer “y” when prompted):

pro:pyesfi yves$ conda --version 
conda 4.9.2 
pro:pyesfi yves$

pro:pyesfi yves$ conda create --name pyesfi python=3.9 
... 
Preparing transaction: done 
Verifying transaction: done 
Executing transaction: done 
# 
# To activate this environment, use 
# 
#     $ conda activate pyesfi 
# 
# To deactivate an active environment, use 
# 
#     $ conda deactivate



After the successful completion, activate the environment as follows:

Notice how the prompt changes. Next, install the required tools IPython and Jupyter Lab as follows
(and answer “y” when prompted):

After that, you should install the major Python packages used for financial data science as follows (the
flag -y  avoids the confirmation prompt):

This provides the most important Python packages for data analysis in general and financial analytics
in particular. You might check whether everything has been installed as follows:

An interactive Python session is then started by simply typing python .

pro:pyesfi yves$ conda activate pyesfi 
(pyesfi) pro:pyesfi yves$

(pyesfi) pro:pyesfi yves$ conda install ipython jupyterlab 
...

(pyesfi) pro:pyesfi yves$ conda install -y numpy pandas matplotlib scipy sympy 
...

(pyesfi) pro:pyesfi yves$ conda list 
# packages in environment at /Users/yves/miniconda3/envs/pyesfi: 
# 
# Name                    Version                   Build  Channel 
anyio                     2.0.2            py39h6e9494a_2    conda-forge 
appnope                   0.1.2            py39h6e9494a_0    conda-forge 
argon2-cffi               20.1.0           py39h5a22ff9_2    conda-forge 
async_generator           1.10                       py_0    conda-forge 
attrs                     20.3.0             pyhd3deb0d_0    conda-forge 
babel                     2.9.0              pyhd3deb0d_0    conda-forge 
backcall                  0.2.0              pyh9f0ad1d_0    conda-forge 
backports                 1.0                        py_2    conda-forge 
... 
webencodings              0.5.1                      py_1    conda-forge 
wheel                     0.36.2             pyhd3deb0d_0    conda-forge 
xz                        5.2.5                haf1e3a3_1    conda-forge 
zeromq                    4.3.3                h74dc148_3    conda-forge 
zipp                      3.4.0                      py_0    conda-forge 
zlib                      1.2.11            h7795811_1010    conda-forge 
zstd                      1.4.5                h289c70a_2    conda-forge 
(pyesfi) pro:pyesfi yves$



A better interactive shell is provided by IPython which is started via ipython  on the shell.

However, it is recommended — especially for the Python beginner — to work with Jupyter Lab in the
browser. To this end, type jupyter lab  on the shell which should give an output similar to the
following:

In general, a new browser tab is opened automatically which then shows you the starting page of
Jupyter similar to Jupyter Lab start page.

(pyesfi) pro:pyesfi yves$ python 
Python 3.9.1 | packaged by conda-forge | (default, Dec 21 2020, 22:06:14) 
[Clang 11.0.0 ] on darwin 
Type "help", "copyright", "credits" or "license" for more information. 
>>> print('Hello Finance World.') 
Hello Finance World. 
>>> exit() 
(pyesfi) pro:pyesfi yves$

(pyesfi) pro:pyesfi yves$ ipython 
Python 3.9.1 | packaged by conda-forge | (default, Dec 21 2020, 22:06:14) 
Type 'copyright', 'credits' or 'license' for more information 
IPython 7.19.0 -- An enhanced Interactive Python. Type '?' for help. 
 
In [1]: import numpy as np 
 
In [2]: np.random.random(10) 
Out[2]: 
array([0.29544518, 0.42983479, 0.04673849, 0.59572647, 0.38915588, 
       0.62393223, 0.34299427, 0.79903732, 0.1940799 , 0.95673132]) 
 
In [3]: exit 
(pyesfi) pro:pyesfi yves$

pro:pyesfi yves$ jupyter lab 
[I 2020-12-30 13:48:23.281 ServerApp] jupyterlab | extension was successfully linked. 
... 
[I 2020-12-30 13:48:23.600 ServerApp] Jupyter Server 1.1.3 is running at: 
[I 2020-12-30 13:48:23.600 ServerApp] http://localhost:8888/lab?token=107dbf... 
[I 2020-12-30 13:48:23.600 ServerApp]  or http://127.0.0.1:8888/lab?token=107db... 
[I 2020-12-30 13:48:23.600 ServerApp] Use Control-C to stop this server and ...



Figure 3. Jupyter Lab start page

You can then open a new Jupyter Notebook and start with interactive Python coding as shown in New
Jupyter Notebook. To write code in a cell click on the cell. To execute the code, use shift+return ,
ctrl+return  or alt+return  (you will notice the difference).



Figure 4. New Jupyter Notebook

You can also open one of the Jupyter Notebook files as provided with this book (see Jupyter Notebook
accompanying the book).



Figure 5. Jupyter Notebook accompanying the book

This section just provides the very basics to get started with Python and related tools such as IPython
and Jupyter Lab. For more details — for example, about how work with IPython — refer to the book
VanderPlas (2016).

1.6. Conclusions
Finance can look back on a long history. The period from 1950 to 1980 is characterized by the
introduction of rigorous mathematical analysis to the field. From the 1980s onwards and in particular
since 2000, the role of computers and computational finance has gained tremendously in importance.
This trend will be further reinforced by the increasing role AI plays in the field, with is
computationally demanding algorithms from machine learning (ML) and deep learning (DL).

The finance field makes use of four different types of language: natural language (English in general),
financial language (notions and expressions special to the field), mathematical language (like linear
algebra or probability theory) as well as programming language (like Python for the purposes of this
book).

The approach of this book is to introduce related concepts from finance, mathematics, and Python
programming alongside each other. The necessary prerequisites on the Python side are minimal, with
the conda  package and environment manager often as the tool of choice nowadays to manage
Python environments.
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