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Preface

These days, Python is undoubtedly one of the major strategic technology platforms in
the financial industry. When I started writing the first edition of this book in 2013, I
still had many conversations and presentations in which I argued relentlessly for
Python’s competitive advantages in finance over other languages and platforms.
Toward the end of 2018, this is not a question anymore: financial institutions around
the world now simply try to make the best use of Python and its powerful ecosystem
of data analysis, visualization, and machine learning packages.

Beyond the realm of finance, Python is also often the language of choice in introduc‐
tory programming courses, such as in computer science programs. Beyond its reada‐
ble syntax and multiparadigm approach, a major reason for this is that Python has
also become a first class citizen in the areas of artificial intelligence (AI), machine
learning (ML), and deep learning (DL). Many of the most popular packages and
libraries in these areas are either written directly in Python (such as scikit-learn for
ML) or have Python wrappers available (such as TensorFlow for DL).

Finance itself is entering a new era, and two major forces are driving this evolution.
The first is the programmatic access to basically all the financial data available—in
general, this happens in real time and is what leads to data-driven finance. Decades
ago, most trading or investment decisions were driven by what traders and portfolio
managers could read in the newspaper or learn through personal conversations. Then
came terminals that brought financial data in real time to the traders’ and portfolio
managers’ desks via computers and electronic communication. Today, individuals (or
teams) can no longer keep up with the vast amounts of financial data generated in
even a single minute. Only machines, with their ever-increasing processing speeds
and computational power, can keep up with the volume and velocity of financial data.
This means, among other things, that most of today’s global equities trading volume
is driven by algorithms and computers rather than by human traders.

The second major force is the increasing importance of AI in finance. More and more
financial institutions try to capitalize on ML and DL algorithms to improve opera‐
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tions and their trading and investment performances. At the beginning of 2018, the
first dedicated book on “financial machine learning” was published, which under‐
scores this trend. Without a doubt, there are more to come. This leads to what might
be called AI-first finance, where flexible, parameterizable ML and DL algorithms
replace traditional financial theory—theory that might be elegant but no longer very
useful in the new era of data-driven, AI-first finance.

Python is the right programming language and ecosystem to tackle the challenges of
this era of finance. Although this book covers basic ML algorithms for unsupervised
and supervised learning (as well as deep neural networks, for instance), the focus is
on Python’s data processing and analysis capabilities. To fully account for the impor‐
tance of AI in finance—now and in the future—another book-length treatment is
necessary. However, most of the AI, ML, and DL techniques require such large
amounts of data that mastering data-driven finance should come first anyway.

This second edition of Python for Finance is more of an upgrade than an update. For
example, it adds a complete part (Part IV) about algorithmic trading. This topic has
recently become quite important in the financial industry, and is also quite popular
with retail traders. It also adds a more introductory part (Part II) where fundamental
Python programming and data analysis topics are presented before they are applied
in later parts of the book. On the other hand, some chapters from the first edition
have been deleted completely. For instance, the chapter on web techniques and pack‐
ages (such as Flask) was dropped because there are more dedicated and focused
books about such topics available today.

For the second edition, I tried to cover even more finance-related topics and to focus
on Python techniques that are particularly useful for financial data science, algorith‐
mic trading, and computational finance. As in the first edition, the approach is a
practical one, in that implementation and illustration come before theoretical details
and I generally focus on the big picture rather than the most arcane parameterization
options of a certain class, method, or function.

Having described the basic approach for the second edition, it is worth emphasizing
that this book is neither an introduction to Python programming nor to finance in
general. A vast number of excellent resources are available for both. This book is loca‐
ted at the intersection of these two exciting fields, and assumes that the reader has
some background in programming (not necessarily Python) as well as in finance.
Such readers learn how to apply Python and its ecosystem to the financial domain.

The Jupyter Notebooks and codes accompanying this book can be accessed and exe‐
cuted via our Quant Platform. You can sign up for free at http://py4fi.pqp.io.

My company (The Python Quants) and myself provide many more resources to mas‐
ter Python for financial data science, artificial intelligence, algorithmic trading, and
computational finance. You can start by visiting the following sites:
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• Our company website
• My private website
• Our Python books website
• Our online training website
• The Certificate Program website

From all the offerings that we have created over the last few years, I am most proud of
our Certificate Program in Python for Algorithmic Trading. It provides over 150 hours
of live and recorded instruction, over 1,200 pages of documentation, over 5,000 lines
of Python code, and over 50 Jupyter Notebooks. The program is offered multiple
times per year and we update and improve it with every cohort. The online program
is the first of its kind, in that successful delegates obtain an official university certifi‐
cate in cooperation with htw saar University of Applied Sciences.

In addition, I recently started The AI Machine, a new project and company to stand‐
ardize the deployment of automated, algorithmic trading strategies. With this project,
we want to implement in a systematic and scalable fashion what we have been teach‐
ing over the years in the field, in order to capitalize on the many opportunities in the
algorithmic trading field. Thanks to Python—and data-driven and AI-first finance—
this project is possible these days even for a smaller team like ours.

I closed the preface for the first edition with the following words:
I am really excited that Python has established itself as an important technology in the
financial industry. I am also sure that it will play an even more important role there in
the future, in fields like derivatives and risk analytics or high performance computing.
My hope is that this book will help professionals, researchers, and students alike make
the most of Python when facing the challenges of this fascinating field.

When I wrote these lines in 2014, I couldn’t have predicted how important Python
would become in finance. In 2018, I am even happier that my expectations and hopes
have been so greatly surpassed. Maybe the first edition of the book played a small part
in this. In any case, a big thank you is in order to all the relentless open source devel‐
opers out there, without whom the success story of Python couldn’t have been
written.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, and email addresses.
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Constant width
Used for program listings, as well as within paragraphs to refer to software pack‐
ages, programming languages, file extensions, filenames, program elements such
as variable or function names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (in particular, Jupyter Notebooks and Python scripts/
modules) is available for usage and download at http://py4fi.pqp.io.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Python for Finance, 2nd Edition, by
Yves Hilpisch (O’Reilly). Copyright 2019 Yves Hilpisch, 978-1-492-02433-0.”
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If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
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PART I

Python and Finance

This part introduces Python for finance. It consists of two chapters:

• Chapter 1 briefly discusses Python in general and argues in some detail why
Python is well suited to addressing the technological challenges in the financial
industry as well as in financial data analytics.

• Chapter 2 is about Python infrastructure; it provides a concise overview of
important aspects of managing a Python environment to get you started with
interactive financial analytics and financial application development in Python.





CHAPTER 1

Why Python for Finance

Banks are essentially technology firms.
—Hugo Banziger

The Python Programming Language
Python is a high-level, multipurpose programming language that is used in a wide
range of domains and technical fields. On the Python website you find the following
executive summary:

Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics. Its high-level built in data structures, combined with dynamic typ‐
ing and dynamic binding, make it very attractive for Rapid Application Development,
as well as for use as a scripting or glue language to connect existing components
together. Python’s simple, easy to learn syntax emphasizes readability and therefore
reduces the cost of program maintenance. Python supports modules and packages,
which encourages program modularity and code reuse. The Python interpreter and the
extensive standard library are available in source or binary form without charge for all
major platforms, and can be freely distributed.

This pretty well describes why Python has evolved into one of the major program‐
ming languages today. Nowadays, Python is used by the beginner programmer as well
as by the highly skilled expert developer, at schools, in universities, at web companies,
in large corporations and financial institutions, as well as in any scientific field.

Among other features, Python is:

Open source
Python and the majority of supporting libraries and tools available are open
source and generally come with quite flexible and open licenses.
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Interpreted
The reference CPython implementation is an interpreter of the language that
translates Python code at runtime to executable byte code.

Multiparadigm
Python supports different programming and implementation paradigms, such as
object orientation and imperative, functional, or procedural programming.

Multipurpose
Python can be used for rapid, interactive code development as well as for build‐
ing large applications; it can be used for low-level systems operations as well as
for high-level analytics tasks.

Cross-platform
Python is available for the most important operating systems, such as Windows,
Linux, and macOS. It is used to build desktop as well as web applications, and it
can be used on the largest clusters and most powerful servers as well as on such
small devices as the Raspberry Pi.

Dynamically typed
Types in Python are in general inferred at runtime and not statically declared as
in most compiled languages.

Indentation aware
In contrast to the majority of other programming languages, Python uses inden‐
tation for marking code blocks instead of parentheses, brackets, or semicolons.

Garbage collecting
Python has automated garbage collection, avoiding the need for the programmer
to manage memory.

When it comes to Python syntax and what Python is all about, Python Enhancement
Proposal 20—i.e., the so-called “Zen of Python”—provides the major guidelines. It
can be accessed from every interactive shell with the command import this:

In [1]: import this
        The Zen of Python, by Tim Peters

        Beautiful is better than ugly.
        Explicit is better than implicit.
        Simple is better than complex.
        Complex is better than complicated.
        Flat is better than nested.
        Sparse is better than dense.
        Readability counts.
        Special cases aren't special enough to break the rules.
        Although practicality beats purity.
        Errors should never pass silently.
        Unless explicitly silenced.
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        In the face of ambiguity, refuse the temptation to guess.
        There should be one-- and preferably only one --obvious way to do it.
        Although that way may not be obvious at first unless you're Dutch.
        Now is better than never.
        Although never is often better than *right* now.
        If the implementation is hard to explain, it's a bad idea.
        If the implementation is easy to explain, it may be a good idea.
        Namespaces are one honking great idea -- let's do more of those!

A Brief History of Python
Although Python might still have the appeal of something new to some people, it has
been around for quite a long time. In fact, development efforts began in the 1980s by
Guido van Rossum from the Netherlands. He is still active in Python development
and has been awarded the title of Benevolent Dictator for Life by the Python commu‐
nity. In July 2018, van Rossum stepped down from this position after decades of being
an active driver of the Python core development efforts. The following can be consid‐
ered milestones in the development of Python:

• Python 0.9.0 released in 1991 (first release)
• Python 1.0 released in 1994
• Python 2.0 released in 2000
• Python 2.6 released in 2008
• Python 3.0 released in 2008
• Python 3.1 released in 2009
• Python 2.7 released in 2010
• Python 3.2 released in 2011
• Python 3.3 released in 2012
• Python 3.4 released in 2014
• Python 3.5 released in 2015
• Python 3.6 released in 2016
• Python 3.7 released in June 2018

It is remarkable, and sometimes confusing to Python newcomers, that there are two
major versions available, still being developed and, more importantly, in parallel use
since 2008. As of this writing, this will probably keep on for a little while since tons of
code available and in production is still Python 2.6/2.7. While the first edition of this
book was based on Python 2.7, this second edition uses Python 3.7 throughout.
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The Python Ecosystem
A major feature of Python as an ecosystem, compared to just being a programming
language, is the availability of a large number of packages and tools. These packages
and tools generally have to be imported when needed (e.g., a plotting library) or have
to be started as a separate system process (e.g., a Python interactive development
environment). Importing means making a package available to the current name‐
space and the current Python interpreter process.

Python itself already comes with a large set of packages and modules that enhance the
basic interpreter in different directions, known as the Python Standard Library. For
example, basic mathematical calculations can be done without any importing, while
more specialized mathematical functions need to be imported through the math mod‐
ule:

In [2]: 100 * 2.5 + 50
Out[2]: 300.0

In [3]: log(1)  

        -----------------------------------------------------------------
        NameError                       Traceback (most recent call last)
        <ipython-input-3-74f22a2fd43b> in <module>
        ----> 1 log(1)  

        NameError: name 'log' is not defined

In [4]: import math  

In [5]: math.log(1)  
Out[5]: 0.0

Without further imports, an error is raised.

After importing the math module, the calculation can be executed.

While math is a standard Python module available with any Python installation, there
are many more packages that can be installed optionally and that can be used in the
very same fashion as the standard modules. Such packages are available from differ‐
ent (web) sources. However, it is generally advisable to use a Python package manager
that makes sure that all libraries are consistent with each other (see Chapter 2 for
more on this topic).

The code examples presented so far use interactive Python environments: IPython
and Jupyter, respectively. These are probably the most widely used interactive Python
environments at the time of this writing. Although IPython started out as just an
enhanced interactive Python shell, it today has many features typically found in inte‐
grated development environments (IDEs), such as support for profiling and debug‐
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ging. Those features missing in IPython are typically provided by advanced text/code
editors, like Vim, which can also be integrated with IPython. Therefore, it is not
unusual to combine IPython with one’s text/code editor of choice to form the basic
toolchain for a Python development process.

IPython enhances the standard interactive shell in many ways. Among other things, it
provides improved command-line history functions and allows for easy object
inspection. For instance, the help text (docstring) for a function is printed by just
adding a ? before or after the function name (adding ?? will provide even more infor‐
mation).

IPython originally came in two popular versions: a shell version and a browser-based
version (the Notebook). The Notebook variant proved so useful and popular that it
evolved into an independent, language-agnostic project now called Jupyter. Given
this background, it is no surprise that Jupyter Notebook inherits most of the benefi‐
cial features of IPython—and offers much more, for example when it comes to visual‐
ization.

Refer to VanderPlas (2016, Chapter 1) for more details on using IPython.

The Python User Spectrum
Python does not only appeal to professional software developers; it is also of use for
the casual developer as well as for domain experts and scientific developers.

Professional software developers find in Python all they might require to efficiently
build large applications. Almost all programming paradigms are supported; there are
powerful development tools available; and any task can, in principle, be addressed
with Python. These types of users typically build their own frameworks and classes,
also work on the fundamental Python and scientific stack, and strive to make the
most of the ecosystem.

Scientific developers or domain experts are generally heavy users of certain packages
and frameworks, have built their own applications that they enhance and optimize
over time, and tailor the ecosystem to their specific needs. These groups of users also
generally engage in longer interactive sessions, rapidly prototyping new code as well
as exploring and visualizing their research and/or domain data sets.

Casual programmers like to use Python generally for specific problems they know that
Python has its strengths in. For example, visiting the gallery page of matplotlib,
copying a certain piece of visualization code provided there, and adjusting the code to
their specific needs might be a beneficial use case for members of this group.

There is also another important group of Python users: beginner programmers, i.e.,
those that are just starting to program. Nowadays, Python has become a very popular
language at universities, colleges, and even schools to introduce students to program‐
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1 Python, for example, is a major language used in the Master of Financial Engineering Program at Baruch Col‐
lege of the City University of New York. The first edition of this book is in use at a large number of universi‐
ties around the world to teach Python for financial analysis and application building.

2 See http://wiki.python.org/moin/BeginnersGuide, where you will find links to many valuable resources for both
developers and non-developers getting started with Python.

ming.1 A major reason for this is that its basic syntax is easy to learn and easy to
understand, even for the non-developer. In addition, it is helpful that Python sup‐
ports almost all programming styles.2

The Scientific Stack
There is a certain set of packages that is collectively labeled the scientific stack. This
stack comprises, among others, the following packages:

NumPy
NumPy provides a multidimensional array object to store homogeneous or hetero‐
geneous data; it also provides optimized functions/methods to operate on this
array object.

SciPy
SciPy is a collection of subpackages and functions implementing important stan‐
dard functionality often needed in science or finance; for example, one finds
functions for cubic splines interpolation as well as for numerical integration.

matplotlib
This is the most popular plotting and visualization package for Python, provid‐
ing both 2D and 3D visualization capabilities.

pandas
pandas builds on NumPy and provides richer classes for the management and
analysis of time series and tabular data; it is tightly integrated with matplotlib
for plotting and PyTables for data storage and retrieval.

scikit-learn
scikit-learn is a popular machine learning (ML) package that provides a uni‐
fied application programming interface (API) for many different ML algorithms,
such as for estimation, classification, or clustering.

PyTables
PyTables is a popular wrapper for the HDF5 data storage package; it is a package
to implement optimized, disk-based I/O operations based on a hierarchical data‐
base/file format.
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Depending on the specific domain or problem, this stack is enlarged by additional
packages, which more often than not have in common that they build on top of one
or more of these fundamental packages. However, the least common denominator or
basic building blocks in general are the NumPy ndarray class (see Chapter 4) and the
pandas DataFrame class (see Chapter 5).

Taking Python as a programming language alone, there are a number of other lan‐
guages available that can probably keep up with its syntax and elegance. For example,
Ruby is a popular language often compared to Python. The language’s website
describes Ruby as:

A dynamic, open source programming language with a focus on simplicity and pro‐
ductivity. It has an elegant syntax that is natural to read and easy to write.

The majority of people using Python would probably also agree with the exact same
statement being made about Python itself. However, what distinguishes Python for
many users from equally appealing languages like Ruby is the availability of the scien‐
tific stack. This makes Python not only a good and elegant language to use, but also
one that is capable of replacing domain-specific languages and tool sets like Matlab or
R. It also provides by default anything that you would expect, say, as a seasoned web
developer or systems administrator. In addition, Python is good at interfacing with
domain-specific languages such as R, so that the decision usually is not about either
Python or something else—it is rather about which language should be the major one.

Technology in Finance
With these “rough ideas” of what Python is all about, it makes sense to step back a bit
and to briefly contemplate the role of technology in finance. This will put one in a
position to better judge the role Python already plays and, even more importantly,
will probably play in the financial industry of the future.

In a sense, technology per se is nothing special to financial institutions (as compared,
for instance, to biotechnology companies) or to the finance function (as compared to
other corporate functions, like logistics). However, in recent years, spurred by inno‐
vation and also regulation, banks and other financial institutions like hedge funds
have evolved more and more into technology companies instead of being just finan‐
cial intermediaries. Technology has become a major asset for almost any financial
institution around the globe, having the potential to lead to competitive advantages as
well as disadvantages. Some background information can shed light on the reasons
for this development.

Technology Spending
Banks and financial institutions together form the industry that spends the most on
technology on an annual basis. The following statement therefore shows not only that
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technology is important for the financial industry, but that the financial industry is
also really important to the technology sector:

FRAMINGHAM, Mass., June 14, 2018 – Worldwide spending on information technol‐
ogy (IT) by financial services firms will be nearly $500 billion in 2021, growing from
$440 billion in 2018, according to new data from a series of Financial Services IT
Spending Guides from International Data Corporation (IDC).

—IDC

In particular, banks and other financial institutions are engaging in a race to make
their business and operating models digital:

Bank spending on new technologies was predicted to amount to 19.9 billion U.S. dol‐
lars in 2017 in North America.
The banks develop current systems and work on new technological solutions in order
to increase their competitiveness on the global market and to attract clients interested
in new online and mobile technologies. It is a big opportunity for global fintech com‐
panies which provide new ideas and software solutions for the banking industry.

—Statista

Large multinational banks today generally employ thousands of developers to main‐
tain existing systems and build new ones. Large investment banks with heavy techno‐
logical requirements often have technology budgets of several billion USD per year.

Technology as Enabler
The technological development has also contributed to innovations and efficiency
improvements in the financial sector. Typically, projects in this area run under the
umbrella of digitalization.

The financial services industry has seen drastic technology-led changes over the past
few years. Many executives look to their IT departments to improve efficiency and
facilitate game-changing innovation—while somehow also lowering costs and continu‐
ing to support legacy systems. Meanwhile, FinTech start-ups are encroaching upon
established markets, leading with customer-friendly solutions developed from the
ground up and unencumbered by legacy systems.

—PwC 19th Annual Global CEO Survey 2016

As a side effect of the increasing efficiency, competitive advantages must often be
looked for in ever more complex products or transactions. This in turn inherently
increases risks and makes risk management as well as oversight and regulation more
and more difficult. The financial crisis of 2007 and 2008 tells the story of potential
dangers resulting from such developments. In a similar vein, “algorithms and com‐
puters gone wild” represent a potential risk to the financial markets; this materialized
dramatically in the so-called flash crash of May 2010, where automated selling led to
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large intraday drops in certain stocks and stock indices. Part IV covers topics related
to the algorithmic trading of financial instruments.

Technology and Talent as Barriers to Entry
On the one hand, technology advances reduce cost over time, ceteris paribus. On the
other hand, financial institutions continue to invest heavily in technology to both
gain market share and defend their current positions. To be active today in certain
areas in finance often brings with it the need for large-scale investments in both tech‐
nology and skilled staff. As an example, consider the derivatives analytics space:

Aggregated over the total software lifecycle, firms adopting in-house strategies for
OTC [derivatives] pricing will require investments between $25 million and $36 mil‐
lion alone to build, maintain, and enhance a complete derivatives library.

—Ding (2010)

Not only is it costly and time-consuming to build a full-fledged derivatives analytics
library, but you also need to have enough experts to do so. And these experts have to
have the right tools and technologies available to accomplish their tasks. With the
development of the Python ecosystem, such efforts have become more efficient and
budgets in this regard can be reduced significantly today compared to, say, 10 years
ago. Part V covers derivatives analytics and builds a small but powerful and flexible
derivatives pricing library with Python and standard Python packages alone.

Another quote about the early days of Long-Term Capital Management (LTCM), for‐
merly one of the most respected quantitative hedge funds—which, however, went
bust in the late 1990s—further supports this insight about technology and talent:

Meriwether spent $20 million on a state-of-the-art computer system and hired a crack
team of financial engineers to run the show at LTCM, which set up shop in Greenwich,
Connecticut. It was risk management on an industrial level.

—Patterson (2010)

The same computing power that Meriwether had to buy for millions of dollars is
today probably available for thousands or can be rented from a cloud provider based
on a flexible fee plan. Chapter 2 shows how to set up an infrastructure in the cloud
for interactive financial analytics, application development, and deployment with
Python. The budgets for such a professional infrastructure start at a few USD per
month. On the other hand, trading, pricing, and risk management have become so
complex for larger financial institutions that today they need to deploy IT infrastruc‐
tures with tens of thousands of computing cores.

Ever-Increasing Speeds, Frequencies, and Data Volumes
The one dimension of the finance industry that has been influenced most by techno‐
logical advances is the speed and frequency with which financial transactions are
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decided and executed. Lewis (2014) describes so-called flash trading—i.e., trading at
the highest speeds possible—in vivid detail.

On the one hand, increasing data availability on ever-smaller time scales makes it
necessary to react in real time. On the other hand, the increasing speed and fre‐
quency of trading makes the data volumes further increase. This leads to processes
that reinforce each other and push the average time scale for financial transactions
systematically down. This is a trend that had already started a decade ago:

Renaissance’s Medallion fund gained an astonishing 80 percent in 2008, capitalizing on
the market’s extreme volatility with its lightning-fast computers. Jim Simons was the
hedge fund world’s top earner for the year, pocketing a cool $2.5 billion.

—Patterson (2010)

Thirty years’ worth of daily stock price data for a single stock represents roughly
7,500 closing quotes. This kind of data is what most of today’s finance theory is based
on. For example, modern or mean-variance portfolio theory (MPT), the capital asset
pricing model (CAPM), and value-at-risk (VaR) all have their foundations in daily
stock price data.

In comparison, on a typical trading day during a single trading hour the stock price
of Apple Inc. (AAPL) may be quoted around 15,000 times—roughly twice the number
of quotes compared to available end-of-day closing quotes over 30 years (see the
example in “Data-Driven and AI-First Finance” on page 24). This brings with it a
number of challenges:

Data processing
It does not suffice to consider and process end-of-day quotes for stocks or other
financial instruments; “too much” happens during the day, and for some instru‐
ments during 24 hours for 7 days a week.

Analytics speed
Decisions often have to be made in milliseconds or even faster, making it neces‐
sary to build the respective analytics capabilities and to analyze large amounts of
data in real time.

Theoretical foundations
Although traditional finance theories and concepts are far from being perfect,
they have been well tested (and sometimes well rejected) over time; for the milli‐
second and microsecond scales important as of today, consistent financial con‐
cepts and theories in the traditional sense that have proven to be somewhat
robust over time are still missing.

All these challenges can in general only be addressed by modern technology. Some‐
thing that might also be a little bit surprising is that the lack of consistent theories
often is addressed by technological approaches, in that high-speed algorithms exploit
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market microstructure elements (e.g., order flow, bid-ask spreads) rather than relying
on some kind of financial reasoning.

The Rise of Real-Time Analytics
There is one discipline that has seen a strong increase in importance in the finance
industry: financial and data analytics. This phenomenon has a close relationship to
the insight that speeds, frequencies, and data volumes increase at a rapid pace in the
industry. In fact, real-time analytics can be considered the industry’s answer to this
trend.

Roughly speaking, “financial and data analytics” refers to the discipline of applying
software and technology in combination with (possibly advanced) algorithms and
methods to gather, process, and analyze data in order to gain insights, to make deci‐
sions, or to fulfill regulatory requirements, for instance. Examples might include the
estimation of sales impacts induced by a change in the pricing structure for a finan‐
cial product in the retail branch of a bank, or the large-scale overnight calculation of
credit valuation adjustments (CVA) for complex portfolios of derivatives trades of an
investment bank.

There are two major challenges that financial institutions face in this context:

Big data
Banks and other financial institutions had to deal with massive amounts of data
even before the term “big data” was coined; however, the amount of data that has
to be processed during single analytics tasks has increased tremendously over
time, demanding both increased computing power and ever-larger memory and
storage capacities.

Real-time economy
In the past, decision makers could rely on structured, regular planning as well as
decision and (risk) management processes, whereas they today face the need to
take care of these functions in real time; several tasks that have been taken care of
in the past via overnight batch runs in the back office have now been moved to
the front office and are executed in real time.

Again, one can observe an interplay between advances in technology and financial/
business practice. On the one hand, there is the need to constantly improve analytics
approaches in terms of speed and capability by applying modern technologies. On the
other hand, advances on the technology side allow new analytics approaches that
were considered impossible (or infeasible due to budget constraints) a couple of years
or even months ago.

One major trend in the analytics space has been the utilization of parallel architec‐
tures on the central processing unit (CPU) side and massively parallel architectures
on the general-purpose graphics processing unit (GPGPU) side. Current GPGPUs
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have computing cores in the thousands, making necessary a sometimes radical
rethinking of what parallelism might mean to different algorithms. What is still an
obstacle in this regard is that users generally have to learn new programming para‐
digms and techniques to harness the power of such hardware.

Python for Finance
The previous section described selected aspects characterizing the role of technology
in finance:

• Costs for technology in the finance industry
• Technology as an enabler for new business and innovation
• Technology and talent as barriers to entry in the finance industry
• Increasing speeds, frequencies, and data volumes
• The rise of real-time analytics

This section analyzes how Python can help in addressing several of the challenges
these imply. But first, on a more fundamental level, a brief analysis of Python for
finance from a language and syntax point of view.

Finance and Python Syntax
Most people who make their first steps with Python in a finance context may attack
an algorithmic problem. This is similar to a scientist who, for example, wants to solve
a differential equation, evaluate an integral, or simply visualize some data. In general,
at this stage, little thought is given to topics like a formal development process, test‐
ing, documentation, or deployment. However, this especially seems to be the stage
where people fall in love with Python. A major reason for this might be that Python
syntax is generally quite close to the mathematical syntax used to describe scientific
problems or financial algorithms.

This can be illustrated by a financial algorithm, namely the valuation of a European
call option by Monte Carlo simulation. The example considers a Black-Scholes-
Merton (BSM) setup in which the option’s underlying risk factor follows a geometric
Brownian motion.

Assume the following numerical parameter values for the valuation:

• Initial stock index level S0 = 100
• Strike price of the European call option K = 105
• Time to maturity T = 1 year
• Constant, riskless short rate r = 0 . 05
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• Constant volatility σ = 0 . 2

In the BSM model, the index level at maturity is a random variable given by Equation
1-1, with z being a standard normally distributed random variable.

Equation 1-1. Black-Scholes-Merton (1973) index level at maturity

ST = S0 exp r − 1
2σ2 T + σ Tz

The following is an algorithmic description of the Monte Carlo valuation procedure:

1. Draw I pseudo-random numbers z i , i ∈ 1, 2, . . . , I , from the standard normal
distribution.

2. Calculate all resulting index levels at maturity ST i  for given z i  and Equation
1-1.

3. Calculate all inner values of the option at maturity as hT i = max ST i − K, 0 .
4. Estimate the option present value via the Monte Carlo estimator as given in

Equation 1-2.

Equation 1-2. Monte Carlo estimator for European option

C0 ≈ e−rT 1
I ∑

I
hT i

This problem and algorithm must now be translated into Python. The following code
implements the required steps:

In [6]: import math
        import numpy as np  

In [7]: S0 = 100.  
        K = 105.  
        T = 1.0  
        r = 0.05  
        sigma = 0.2  

In [8]: I = 100000  

In [9]: np.random.seed(1000)  

In [10]: z = np.random.standard_normal(I)  

In [11]: ST = S0 * np.exp((r - sigma ** 2 / 2) * T + sigma * math.sqrt(T) * z)  
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In [12]: hT = np.maximum(ST - K, 0)  

In [13]: C0 = math.exp(-r * T) * np.mean(hT)  

In [14]: print('Value of the European call option: {:5.3f}.'.format(C0))  
         Value of the European call option: 8.019.

NumPy is used here as the main package.

The model and simulation parameter values are defined.

The seed value for the random number generator is fixed.

Standard normally distributed random numbers are drawn.

End-of-period values are simulated.

The option payoffs at maturity are calculated.

The Monte Carlo estimator is evaluated.

The resulting value estimate is printed.

Three aspects are worth highlighting:

Syntax
The Python syntax is indeed quite close to the mathematical syntax, e.g., when it
comes to the parameter value assignments.

Translation
Every mathematical and/or algorithmic statement can generally be translated
into a single line of Python code.

Vectorization
One of the strengths of NumPy is the compact, vectorized syntax, e.g., allowing for
100,000 calculations within a single line of code.

This code can be used in an interactive environment like IPython or Jupyter Note‐
book. However, code that is meant to be reused regularly typically gets organized in
so-called modules (or scripts), which are single Python files (technically text files) with
the suffix .py. Such a module could in this case look like Example 1-1 and could be
saved as a file named bsm_mcs_euro.py.

16 | Chapter 1: Why Python for Finance



Example 1-1. Monte Carlo valuation of European call option

#
# Monte Carlo valuation of European call option
# in Black-Scholes-Merton model
# bsm_mcs_euro.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import math
import numpy as np

# Parameter Values
S0 = 100.  # initial index level
K = 105.  # strike price
T = 1.0  # time-to-maturity
r = 0.05  # riskless short rate
sigma = 0.2  # volatility

I = 100000  # number of simulations

# Valuation Algorithm
z = np.random.standard_normal(I)  # pseudo-random numbers
# index values at maturity
ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T + sigma * math.sqrt(T) * z)
hT = np.maximum(ST - K, 0)  # payoff at maturity
C0 = math.exp(-r * T) * np.mean(hT)  # Monte Carlo estimator

# Result Output
print('Value of the European call option %5.3f.' % C0)

The algorithmic example in this subsection illustrates that Python, with its very syn‐
tax, is well suited to complement the classic duo of scientific languages, English and
mathematics. It seems that adding Python to the set of scientific languages makes it
more well rounded. One then has:

• English for writing and talking about scientific and financial problems, etc.
• Mathematics for concisely, exactly describing and modeling abstract aspects, algo‐

rithms, complex quantities, etc.
• Python for technically modeling and implementing abstract aspects, algorithms,

complex quantities, etc.
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Mathematics and Python Syntax

There is hardly any programming language that comes as close to
mathematical syntax as Python. Numerical algorithms are there‐
fore in general straightforward to translate from the mathematical
representation into the Pythonic implementation. This makes pro‐
totyping, development, and code maintenance in finance quite effi‐
cient with Python.

In some areas, it is common practice to use pseudo-code and therewith to introduce a
fourth language family member. The role of pseudo-code is to represent, for example,
financial algorithms in a more technical fashion that is both still close to the mathe‐
matical representation and already quite close to the technical implementation. In
addition to the algorithm itself, pseudo-code takes into account how computers work
in principle.

This practice generally has its cause in the fact that with most (compiled) program‐
ming languages the technical implementation is quite “far away” from its formal,
mathematical representation. The majority of programming languages make it neces‐
sary to include so many elements that are only technically required that it is hard to
see the equivalence between the mathematics and the code.

Nowadays, Python is often used in a pseudo-code way since its syntax is almost analo‐
gous to the mathematics and since the technical “overhead” is kept to a minimum.
This is accomplished by a number of high-level concepts embodied in the language
that not only have their advantages but also come in general with risks and/or other
costs. However, it is safe to say that with Python you can, whenever the need arises,
follow the same strict implementation and coding practices that other languages
might require from the outset. In that sense, Python can provide the best of both
worlds: high-level abstraction and rigorous implementation.

Efficiency and Productivity Through Python
At a high level, benefits from using Python can be measured in three dimensions:

Efficiency
How can Python help in getting results faster, in saving costs, and in saving time?

Productivity
How can Python help in getting more done with the same resources (people,
assets, etc.)?

Quality
What does Python allow one to do that alternative technologies do not allow for?
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A discussion of these aspects can by nature not be exhaustive. However, it can high‐
light some arguments as a starting point.

Shorter time-to-results
A field where the efficiency of Python becomes quite obvious is interactive data ana‐
lytics. This is a field that benefits tremendously from such powerful tools as IPython,
Jupyter Notebook, and packages like pandas.

Consider a finance student who is writing their master’s thesis and is interested in
S&P 500 index values. They want to analyze historical index levels for, say, a few years
to see how the volatility of the index has fluctuated over time and hope to find evi‐
dence that volatility, in contrast to some typical model assumptions, fluctuates over
time and is far from being constant. The results should also be visualized. The stu‐
dent mainly has to do the following:

• Retrieve index level data from the web
• Calculate the annualized rolling standard deviation of the log returns (volatility)
• Plot the index level data and the volatility results

These tasks are complex enough that not too long ago one would have considered
them to be something for professional financial analysts only. Today, even the finance
student can easily cope with such problems. The following code shows how exactly
this works—without worrying about syntax details at this stage (everything is
explained in detail in subsequent chapters):

In [16]: import numpy as np  
         import pandas as pd  
         from pylab import plt, mpl  

In [17]: plt.style.use('seaborn')  
         mpl.rcParams['font.family'] = 'serif'  
         %matplotlib inline

In [18]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                           index_col=0, parse_dates=True)  
         data = pd.DataFrame(data['.SPX']) 
         data.dropna(inplace=True)  
         data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29
         Data columns (total 1 columns):
         .SPX    2138 non-null float64
         dtypes: float64(1)
         memory usage: 33.4 KB

In [19]: data['rets'] = np.log(data / data.shift(1))  
         data['vola'] = data['rets'].rolling(252).std() * np.sqrt(252)  
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In [20]: data[['.SPX', 'vola']].plot(subplots=True, figsize=(10, 6));  

This imports NumPy and pandas.

This imports matplotlib and configures the plotting style and approach for
Jupyter.

pd.read_csv() allows the retrieval of remotely or locally stored data sets in
comma-separated values (CSV) form.

A subset of the data is picked and NaN (“not a number”) values eliminated.

This shows some metainformation about the data set.

The log returns are calculated in vectorized fashion (“no looping” on the Python
level).

The rolling, annualized volatility is derived.

This finally plots the two time series.

Figure 1-1 shows the graphical result of this brief interactive session. It can be consid‐
ered almost amazing that a few lines of code suffice to implement three rather com‐
plex tasks typically encountered in financial analytics: data gathering, complex and
repeated mathematical calculations, as well as visualization of the results. The exam‐
ple illustrates that pandas makes working with whole time series almost as simple as
doing mathematical operations on floating-point numbers.

Translated to a professional finance context, the example implies that financial ana‐
lysts can—when applying the right Python tools and packages that provide high-level
abstractions—focus on their domain and not on the technical intrinsicalities. Ana‐
lysts can also react faster, providing valuable insights almost in real time and making
sure they are one step ahead of the competition. This example of increased efficiency
can easily translate into measurable bottom-line effects.
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Figure 1-1. S&P 500 closing values and annualized volatility

Ensuring high performance
In general, it is accepted that Python has a rather concise syntax and that it is rela‐
tively efficient to code with. However, due to the very nature of Python being an
interpreted language, the prejudice persists that Python often is too slow for
compute-intensive tasks in finance. Indeed, depending on the specific implementa‐
tion approach, Python can be really slow. But it does not have to be slow—it can be
highly performing in almost any application area. In principle, one can distinguish at
least three different strategies for better performance:

Idioms and paradigms
In general, many different ways can lead to the same result in Python, but some‐
times with rather different performance characteristics; “simply” choosing the
right way (e.g., a specific implementation approach, such as the judicious use of
data structures, avoiding loops through vectorization, or the use of a specific
package such as pandas) can improve results significantly.

Compiling
Nowadays, there are several performance packages available that provide com‐
piled versions of important functions or that compile Python code statically or
dynamically (at runtime or call time) to machine code, which can make such
functions orders of magnitude faster than pure Python code; popular ones are
Cython and Numba.
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Parallelization
Many computational tasks, in particular in finance, can significantly benefit from
parallel execution; this is nothing special to Python but something that can easily
be accomplished with it.

Performance Computing with Python

Python per se is not a high-performance computing technology.
However, Python has developed into an ideal platform to access
current performance technologies. In that sense, Python has
become something like a glue language for performance computing
technologies.

This subsection sticks to a simple, but still realistic, example that touches upon all
three strategies (later chapters illustrate the strategies in detail). A quite common task
in financial analytics is to evaluate complex mathematical expressions on large arrays
of numbers. To this end, Python itself provides everything needed:

In [21]: import math
         loops = 2500000
         a = range(1, loops)
         def f(x):
             return 3 * math.log(x) + math.cos(x) ** 2
         %timeit r = [f(x) for x in a]
         1.59 s ± 41.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The Python interpreter needs about 1.6 seconds in this case to evaluate the function
f() 2,500,000 times. The same task can be implemented using NumPy, which provides
optimized (i.e., precompiled) functions to handle such array-based operations:

In [22]: import numpy as np
         a = np.arange(1, loops)
         %timeit r = 3 * np.log(a) + np.cos(a) ** 2
         87.9 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Using NumPy considerably reduces the execution time to about 88 milliseconds. How‐
ever, there is even a package specifically dedicated to this kind of task. It is called
numexpr, for “numerical expressions.” It compiles the expression to improve upon the
performance of the general NumPy functionality by, for example, avoiding in-memory
copies of ndarray objects along the way:

In [23]: import numexpr as ne
         ne.set_num_threads(1)
         f = '3 * log(a) + cos(a) ** 2'
         %timeit r = ne.evaluate(f)
         50.6 ms ± 4.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
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Using this more specialized approach further reduces execution time to about 50
milliseconds. However, numexpr also has built-in capabilities to parallelize the execu‐
tion of the respective operation. This allows us to use multiple threads of a CPU:

In [24]: ne.set_num_threads(4)
         %timeit r = ne.evaluate(f)
         22.8 ms ± 1.76 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Parallelization brings execution time further down to below 23 milliseconds in this
case, with four threads utilized. Overall, this is a performance improvement of more
than 90 times. Note, in particular, that this kind of improvement is possible without
altering the basic problem/algorithm and without knowing any detail about compil‐
ing or parallelization approaches. The capabilities are accessible from a high level
even by non-experts. However, one has to be aware, of course, of which capabilities
and options exist.

This example shows that Python provides a number of options to make more out of
existing resources—i.e., to increase productivity. With the parallel approach, three
times as many calculations can be accomplished in the same amount of time as com‐
pared to the sequential approach—in this case simply by telling Python to use multi‐
ple available CPU threads instead of just one.

From Prototyping to Production
Efficiency in interactive analytics and performance when it comes to execution speed
are certainly two benefits of Python to consider. Yet another major benefit of using
Python for finance might at first sight seem a bit subtler; at second sight, it might
present itself as an important strategic factor for financial institutions. It is the possi‐
bility to use Python end-to-end, from prototyping to production.

Today’s practice in financial institutions around the globe, when it comes to financial
development processes, is still often characterized by a separated, two-step process.
On the one hand, there are the quantitative analysts (“quants”) responsible for model
development and technical prototyping. They like to use tools and environments like
Matlab and R that allow for rapid, interactive application development. At this stage
of the development efforts, issues like performance, stability, deployment, access
management, and version control, among others, are not that important. One is
mainly looking for a proof of concept and/or a prototype that exhibits the main
desired features of an algorithm or a whole application.

Once the prototype is finished, IT departments with their developers take over and are
responsible for translating the existing prototype code into reliable, maintainable, and
performant production code. Typically, at this stage there is a paradigm shift in that
compiled languages, such as C++ or Java, are used to fulfill the requirements for
deployment and production. Also, a formal development process with professional
tools, version control, etc., is generally applied.
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This two-step approach has a number of generally unintended consequences:

Inefficiencies
Prototype code is not reusable; algorithms have to be implemented twice; redun‐
dant efforts take time and resources; risks arise during translation

Diverse skill sets
Different departments show different skill sets and use different languages to
implement “the same things”; people not only program but also speak different
languages

Legacy code
Code is available and has to be maintained in different languages, often using dif‐
ferent styles of implementation

Using Python, on the other hand, enables a streamlined end-to-end process from the
first interactive prototyping steps to highly reliable and efficiently maintainable pro‐
duction code. The communication between different departments becomes easier.
The training of the workforce is also more streamlined in that there is only one major
language covering all areas of financial application building. It also avoids the inher‐
ent inefficiencies and redundancies when using different technologies in different
steps of the development process. All in all, Python can provide a consistent techno‐
logical framework for almost all tasks in financial analytics, financial application
development, and algorithm implementation.

Data-Driven and AI-First Finance
Basically all the observations regarding the relationship of technology and the finan‐
cial industry first formulated in 2014 for the first edition of this book still seem pretty
current and important in August 2018, at the time of updating this chapter for the
second edition of the book. However, this section comments on two major trends in
the financial industry that are about to reshape it in a fundamental way. These two
trends have mainly crystallized themselves over the last few years.

Data-Driven Finance
Some of the most important financial theories, such as MPT and CAPM, date as far
back as to the 1950s and 1960s. However, they still represent a cornerstone in the
education of students in such fields as economics, finance, financial engineering, and
business administration. This might be surprising since the empirical support for
most of these theories is meager at best, and the evidence is often in complete con‐
trast to what the theories suggest and imply. On the other hand, their popularity is
understandable since they are close to humans’ expectations of how financial markets
might behave and since they are elegant mathematical theories resting on a number
of appealing, if in general too simplistic, assumptions.
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The scientific method, say in physics, starts with data, for example from experiments
or observations, and moves on to hypotheses and theories that are then tested against
the data. If the tests are positive, the hypotheses and theories might be refined and
properly written down, for instance, in the form of a research paper for publication. If
the tests are negative, the hypotheses and theories are rejected and the search begins
anew for ones that conform with the data. Since physical laws are stable over time,
once such a law is discovered and well tested it is generally there to stay, in the best
case, forever.

The history of (quantitative) finance in large parts contradicts the scientific method.
In many cases, theories and models have been developed “from scratch” on the basis
of simplifying mathematical assumptions with the goal of discovering elegant answers
to central problems in finance. Among others, popular assumptions in finance are
normally distributed returns for financial instruments and linear relationships
between quantities of interest. Since these phenomena are hardly ever found in finan‐
cial markets, it should not come as a surprise that empirical evidence for the elegant
theories is often lacking. Many financial theories and models have been formulated,
proven, and published first and have only later been tested empirically. To some
extent, this is of course due to the fact that financial data back in the 1950s to the
1970s or even later was not available in the form that it is today even to students get‐
ting started with a bachelor’s in finance.

The availability of such data to financial institutions has drastically increased since
the early to mid-1990s, and nowadays even individuals doing financial research or
getting involved in algorithmic trading have access to huge amounts of historical data
down to the tick level as well as real-time tick data via streaming services. This allows
us to return to the scientific method, which starts in general with the data before
ideas, hypotheses, models, and strategies are devised.

A brief example shall illustrate how straightforward it has become today to retrieve
professional data on a large scale even on a local machine, making use of Python and
a professional data subscription to the Eikon Data APIs. The following example
retrieves tick data for the Apple Inc. stock for one hour during a regular trading day.
About 15,000 tick quotes, including volume information, are retrieved. While the
symbol for the stock is AAPL, the Reuters Instrument Code (RIC) is AAPL.O:

In [26]: import eikon as ek  

In [27]: data = ek.get_timeseries('AAPL.O', fields='*',
                                  start_date='2018-10-18 16:00:00',
                                  end_date='2018-10-18 17:00:00',
                                  interval='tick')  

In [28]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 35350 entries, 2018-10-18 16:00:00.002000 to 2018-10-18
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          16:59:59.888000
         Data columns (total 2 columns):
         VALUE     35285 non-null float64
         VOLUME    35350 non-null float64
         dtypes: float64(2)
         memory usage: 828.5 KB

In [29]: data.tail()  
Out[29]: AAPL.O                    VALUE  VOLUME
         Date
         2018-10-18 16:59:59.433  217.13    10.0
         2018-10-18 16:59:59.433  217.13    12.0
         2018-10-18 16:59:59.439  217.13   231.0
         2018-10-18 16:59:59.754  217.14   100.0
         2018-10-18 16:59:59.888  217.13   100.0

Eikon Data API usage requires a subscription and an API connection.

Retrieves the tick data for the Apple Inc. (AAPL.O) stock.

Shows the last five rows of tick data.

The Eikon Data APIs give access not only to structured financial data, such as histori‐
cal price data, but also to unstructured data such as news articles. The next example
retrieves metadata for a small selection of news articles and shows the beginning of
one of the articles as full text:

In [30]: news = ek.get_news_headlines('R:AAPL.O Language:LEN',
                                  date_from='2018-05-01',
                                  date_to='2018-06-29',
                                  count=7)  

In [31]: news  
Out[31]:
                                     versionCreated  \
    2018-06-28 23:00:00.000 2018-06-28 23:00:00.000
    2018-06-28 21:23:26.526 2018-06-28 21:23:26.526
    2018-06-28 19:48:32.627 2018-06-28 19:48:32.627
    2018-06-28 17:33:10.306 2018-06-28 17:33:10.306
    2018-06-28 17:33:07.033 2018-06-28 17:33:07.033
    2018-06-28 17:31:44.960 2018-06-28 17:31:44.960
    2018-06-28 17:00:00.000 2018-06-28 17:00:00.000

                                                                          text  \
    2018-06-28 23:00:00.000  RPT-FOCUS-AI ambulances and robot doctors: Chi...
    2018-06-28 21:23:26.526  Why Investors Should Love Apple's (AAPL) TV En...
    2018-06-28 19:48:32.627  Reuters Insider - Trump: We're reclaiming our ...
    2018-06-28 17:33:10.306  Apple v. Samsung ends not with a whimper but a...
    2018-06-28 17:33:07.033  Apple's trade-war discount extended for anothe...
    2018-06-28 17:31:44.960  Other Products: Apple's fast-growing island of...
    2018-06-28 17:00:00.000  Pokemon Go creator plans to sell the tech behi...
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                                                                  storyId  \
    2018-06-28 23:00:00.000  urn:newsml:reuters.com:20180628:nL4N1TU4F8:6
    2018-06-28 21:23:26.526  urn:newsml:reuters.com:20180628:nNRA6e2vft:1
    2018-06-28 19:48:32.627  urn:newsml:reuters.com:20180628:nRTV1vNw1p:1
    2018-06-28 17:33:10.306  urn:newsml:reuters.com:20180628:nNRA6e1oza:1
    2018-06-28 17:33:07.033  urn:newsml:reuters.com:20180628:nNRA6e1pmv:1
    2018-06-28 17:31:44.960  urn:newsml:reuters.com:20180628:nNRA6e1m3n:1
    2018-06-28 17:00:00.000  urn:newsml:reuters.com:20180628:nL1N1TU0PC:3

                            sourceCode
    2018-06-28 23:00:00.000    NS:RTRS
    2018-06-28 21:23:26.526  NS:ZACKSC
    2018-06-28 19:48:32.627    NS:CNBC
    2018-06-28 17:33:10.306  NS:WALLST
    2018-06-28 17:33:07.033  NS:WALLST
    2018-06-28 17:31:44.960  NS:WALLST
    2018-06-28 17:00:00.000    NS:RTRS

In [32]: story_html = ek.get_news_story(news.iloc[1, 2])  

In [33]: from bs4 import BeautifulSoup  

In [34]: story = BeautifulSoup(story_html, 'html5lib').get_text()  

In [35]: print(story[83:958])  
         Jun 28, 2018 For years, investors and Apple AAPL have been beholden to
          the iPhone, which is hardly a negative since its flagship product is
          largely responsible for turning Apple into one of the world's biggest
          companies. But Apple has slowly pushed into new growth areas, with
          streaming television its newest frontier. So let's take a look at what
          Apple has planned as it readies itself to compete against the likes of
          Netflix NFLX and Amazon AMZN in the battle for the new age of
          entertainment.Apple's second-quarter revenues jumped by 16% to reach
          $61.14 billion, with iPhone revenues up 14%. However, iPhone unit sales
          climbed only 3% and iPhone revenues accounted for over 62% of total Q2
          sales. Apple knows this is not a sustainable business model, because
          rare is the consumer product that can remain in vogue for decades. This
          is why Apple has made a big push into news,

Retrieves metadata for a small selection of news articles.

Retrieves the full text of a single article, delivered as an HTML document.

Imports the BeautifulSoup HTML parsing package and …

… extracts the contents as plain text (a str object).

Prints the beginning of the news article.
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Although just scratching the surface, these two examples illustrate that structured and
unstructured historical financial data is available in a standardized, efficient way via
Python wrapper packages and data subscription services. In many circumstances,
similar data sets can be accessed for free even by individuals who make use of, for
instance, trading platforms such as the one by FXCM Group, LLC, that is introduced
in Chapter 14 and also used in Chapter 16. Once the data is on the Python level—
independent from the original source—the full power of the Python data analytics
ecosystem can be harnessed.

Data-Driven Finance

Data is what drives finance these days. Even some of the largest and
often most successful hedge funds call themselves “data-driven”
instead of “finance-driven.” More and more offerings are making
huge amounts of data available to large and small institutions and
individuals. Python is generally the programming language of
choice to interact with the APIs and to process and analyze the
data.

AI-First Finance
With the availability of large amounts of financial data via programmatic APIs, it has
become much easier and more fruitful to apply methods from artificial intelligence
(AI) in general and from machine and deep learning (ML, DL) in particular to finan‐
cial problems, such as in algorithmic trading.

Python can be considered a first-class citizen in the AI world as well. It is often the
programming language of choice for AI researchers and practitioners alike. In that
sense, the financial domain benefits from developments in diverse fields, sometimes
not even remotely connected to finance. As one example consider the TensorFlow
open source package for deep learning, which is developed and maintained by Google
Inc. and used by (among others) its parent company Alphabet Inc. in its efforts to
build, produce, and sell self-driving cars.

Although for sure not even remotely related to the problem of automatically, algo‐
rithmically trading stock, TensorFlow can, for example, be used to predict move‐
ments in financial markets. Chapter 15 provides a number of examples in this regard.

One of the most widely used Python packages for ML is scikit-learn. The code that
follows shows how, in a highly simplified manner, classification algorithms from ML
can be used to predict the direction of future market price movements and to base an
algorithmic trading strategy on those predictions. All the details are explained in
Chapter 15, so the example is therefore rather concise. First, the data import and the
preparation of the features data (directional lagged log return data):
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In [36]: import numpy as np
         import pandas as pd

In [37]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                            index_col=0, parse_dates=True)
         data = pd.DataFrame(data['AAPL.O'])  
         data['Returns'] = np.log(data / data.shift())  
         data.dropna(inplace=True)

In [38]: lags = 6

In [39]: cols = []
         for lag in range(1, lags + 1):
             col = 'lag_{}'.format(lag)
             data[col] = np.sign(data['Returns'].shift(lag))  
             cols.append(col)
         data.dropna(inplace=True)

Selects historical end-of-day data for the Apple Inc. stock (AAPL.O).

Calculates the log returns over the complete history.

Generates DataFrame columns with directional lagged log return data (+1 or -1).

Next, the instantiation of a model object for a support vector machine (SVM) algo‐
rithm, the fitting of the model, and the prediction step. Figure 1-2 shows that the
prediction-based trading strategy, going long or short on Apple Inc. stock depending
on the prediction, outperforms the passive benchmark investment in the stock itself:

In [40]: from sklearn.svm import SVC

In [41]: model = SVC(gamma='auto')  

In [42]: model.fit(data[cols], np.sign(data['Returns']))  
Out[42]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
           decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
           max_iter=-1, probability=False, random_state=None, shrinking=True,
           tol=0.001, verbose=False)

In [43]: data['Prediction'] = model.predict(data[cols])  

In [44]: data['Strategy'] = data['Prediction'] * data['Returns']  

In [45]: data[['Returns', 'Strategy']].cumsum().apply(np.exp).plot(
                 figsize=(10, 6));  

Instantiates the model object.

Fits the model, given the features and the label data (all directional).
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Uses the fitted model to create the predictions (in-sample), which are the posi‐
tions of the trading strategy at the same time (long or short).

Calculates the log returns of the trading strategy given the prediction values and
the benchmark log returns.

Plots the performance of the ML-based trading strategy compared to the perfor‐
mance of the passive benchmark investment.

Figure 1-2. ML-based algorithmic trading strategy vs. passive benchmark investment in
Apple Inc. stock

The simplified approach taken here does not account for transaction costs, nor does
it separate the data set into training and testing subsets. However, it shows how
straightforward the application of ML algorithms to financial data is, at least in a
technical sense; practically, a number of important topics need to be considered (see
López de Prado (2018)).

AI-First Finance

AI will reshape finance in a way that other fields have been resha‐
ped already. The availability of large amounts of financial data via
programmatic APIs functions as an enabler in this context. Basic
methods from AI, ML, and DL are introduced in Chapter 13 and
applied to algorithmic trading in Chapters 15 and 16. A proper
treatment of AI-first finance, however, would require a book fully
dedicated to the topic.
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AI in finance, as a natural extension of data-driven finance, is for sure a fascinating
and exciting field, both from a research and a practitioner’s point of view. Although
this book uses several methods from AI, ML, and DL in different contexts, overall the
focus lies—in line with the subtitle of the book—on the fundamental Python techni‐
ques and approaches needed for data-driven finance. These are, however, equally
important for AI-first finance.

Conclusion
Python as a language—and even more so as an ecosystem—is an ideal technological
framework for the financial industry as whole and the individual working in finance
alike. It is characterized by a number of benefits, like an elegant syntax, efficient
development approaches, and usability for prototyping as well as production. With
its huge amount of available packages, libraries, and tools, Python seems to have
answers to most questions raised by recent developments in the financial industry in
terms of analytics, data volumes and frequency, compliance and regulation, as well as
technology itself. It has the potential to provide a single, powerful, consistent frame‐
work with which to streamline end-to-end development and production efforts even
across larger financial institutions.

In addition, Python has become the programming language of choice for artificial
intelligence in general and machine and deep learning in particular. Python is there‐
fore the right language for data-driven finance as well as for AI-first finance, two
recent trends that are about to reshape finance and the financial industry in funda‐
mental ways.

Further Resources
The following books cover several aspects only touched upon in this chapter in more
detail (e.g., Python tools, derivatives analytics, machine learning in general, and
machine learning in finance):

• Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester, England:
Wiley Finance.

• López de Prado, Marcos (2018). Advances in Financial Machine Learning.
Hoboken, NJ: John Wiley & Sons.

• VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol, CA:
O’Reilly.

When it comes to algorithmic trading, the author’s company offers a range of online
training programs that focus on Python and other tools and techniques required in
this rapidly growing field:
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• http://pyalgo.tpq.io
• http://certificate.tpq.io

Sources referenced in this chapter are, among others, the following:

• Ding, Cubillas (2010). “Optimizing the OTC Pricing and Valuation Infrastruc‐
ture.” Celent.

• Lewis, Michael (2014). Flash Boys. New York: W. W. Norton & Company.
• Patterson, Scott (2010). The Quants. New York: Crown Business.
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Symbols
% character, 71
%time function, 276
%timeit function, 276
* (multiplication) operator, 150, 161
+ (addition) operator, 150, 161
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matplotlib import and customization, 168
one-dimensional data sets, 169-176
other plot styles, 183-191
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3D plotting, 191-194
__abs__ method, 160
__add__ method, 161
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__getitem__ method, 161
__init__ method, 155, 159
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__len__ method, 161
__mul__ method, 161
__repr__ method, 160
__sizeof__ method, 150
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A
absolute differences, calculating, 212
absolute price data, 442
abstraction, 147
acknowledgments, xviii
adaptive quadrature, 336
addition (+) operator, 150, 161
aggregation, 148, 158
AI-first finance, 28

algorithmic trading
automated trading, 521-554
FXCM trading platform, 467-481
trading strategies, 483-520

algorithms (see also financial algorithms)
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for supervised learning, 448
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American options, 376, 380, 607-614
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antithetic variates, 373
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appending, using pandas, 136
apply() method, 142, 218
approximation

interpolation technique, 324-328
main focus of, 312
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regression technique, 313-324

arbitrary-precision floats, 65
array module, 88
arrays (see also NumPy)

handling with pure Python code, 86-90
I/O with PyTables, 262
Python array class, 88-90
writing and reading NumPy arrays, 242

artificial intelligence (AI), 28
Asian payoff, 606
attributes, in object-oriented programming,
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attributions, xvi
automated trading

capital management, 522-532
infrastructure and deployment, 546
logging and monitoring, 547-550
ML-based trading strategy, 532-543
online algorithm, 544
Python scripts, 550-554
risk management, 547

average_cy1() function, 280
average_nb() function, 279
average_np() function, 278
average_py() function, 277

B
Bayesian statistics

Bayesian regression, 430
Bayes’ formula, 429
concept of, 398
real-world data application, 435
updating estimates over time, 439

Benevolent Dictator for Life, 5
Bermudan exercise, 380, 607
big data, 13, 231
binomial trees

Cox, Ross, and Rubinstein pricing model,
294

Cython implementation, 297
Numba implementation, 297
NumPy implementation, 295
Python implementation, 294

bit_length() method, 62
Black-Scholes-Merton (BSM), 14, 299, 353, 356,

369, 673-676
Booleans, 66
boxplots, 188
Brownian motion, 299, 354, 356, 399, 491
bsm_functions.py module, 378

C
call options, 375
callback functions, 477
candles data, 472
capital asset pricing model, 398
capital management

Kelly criterion for stocks and indices,
527-532

Kelly criterion in binomial settings, 522-526
capital market line, 425

changes over time, calculating, 212-215
charts and graphs (see data visualization)
Chi square distribution, 351
Cholesky decomposition, 365
class attributes, 145
classes

building custom, 154-159
in object-oriented programming, 145

classification problems, 448, 504-511
cloud instances

basics of, 34
benefits of, 56
files required, 51
installation script for Python and Jupyter

Notebook, 53
Jupyter Notebook configuration file, 52
major tools used, 50
RSA public and private keys, 51
script to orchestrate Droplet setup, 55
selecting appropriate hardware architecture,

273
service providers, 50

code examples, obtaining and using, xvi
coin tossing game, 522
comparison operators, 66
compilation

dynamic compiling, 276, 279
packages to speed up algorithms, 308
static, 280

complex selection, using pandas, 132-135
composition, 148
compressed tables, 260
concatenation, using pandas, 135
conda

basic package management with, 37-41
Miniconda installation, 35
virtual environment management with,

41-44
constant short rate, 563
constant volatility, 365
constants, 565
containers, 34 (see also Docker containers)
contingent claims, valuation of, 375
control structures, 78
convex optimization

constrained optimization, 332
global minimum representation, 328
global optimization, 329
local optimization, 331
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use cases for, 328
correlation analysis

data for, 222
direct correlation measures, 227
logarithmic returns, 224
OLS regression, 226

count() method, 76
counter-based looping, 78
covariance matrix, 416
covariances, 398
Cox, Ross, and Rubinstein pricing model, 294,

359
create_plot() function, 312
create_ts() function, 269
credit valuation adjustments (CVA), 388
credit value-at-risk (CVaR), 388
CSV files

I/O with pandas, 250
reading and writing with Python, 236

cubic splines interpolation, 426
Cufflinks library, 167, 195, 199
cumsum() method, 171, 177, 215
curly braces ({}), 71
curves, 565
Cython

benefits of, 62, 281
binomial trees using, 297
exponentially weighted moving average

(EWMA), 307
looping in, 280
Monte Carlo simulation using, 302
prime number algorithm, 284
recursive function implementations, 286
special data type for larger numbers, 288

D
data visualization

interactive 2D plotting, 195-203
packages for, 167
static 2D plotting, 168-191
static 3D plotting, 191-194
using pandas, 126

Data-Driven Documents (D3.js) standard, 167,
195

data-driven finance, 24
DataFrame class

benefits of, 114
major features of, 115

working with DataFrame objects, 115-118,
152

working with ndarray objects, 119-123, 151,
170

DataFrame() function, 119
date-time information (see also financial time

series data)
financial plots, 199-203
managing with pandas, 119-123
modeling and handling dates, 561
NumPy functionality for handling, 665-667
pandas functionality for handling, 668-670
parsing with regular expressions, 74
plotting, 667
Python datetime module, 659-665

datetime module, 659-665
datetime64 information, 667
DatetimeIndex objects, 120, 668
date_range() function, 121
DAX 30 stock index, 637
decision trees (DTs), 452
deep learning (DL), 28, 454
deep neural networks (DNNs)

benefits and drawbacks of, 454
feature transforms, 457
trading strategies and, 512-519
train-test splits and, 459
with scikit-learn, 454
with TensorFlow, 455

delta, 599
derivatives analytics

derivatives valuation, 595-616
DX analytics package, 556, 617
DX pricing library, 555
market-based valuation, 637-657
portfolio valuation, 617-636
simulation of financial models, 571-592
valuation framework, 557-569

derivatives portfolios
class to model, 622-626
use cases for, 626-633

derivatives positions
class to model, 618
use cases for, 620

derivatives valuation
American exercise, 607-614
European exercise, 600-607
generic valuation class, 596-600

derivatives_portfolio class, 627, 634
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derivatives_position class, 634
describe() function, 123, 211
deserialization, 233
df.iplot() method, 196
diachronic interpretation, 429
dict objects, 81, 235
diff() function, 213
digitalization, 10
DigitalOcean, 50
dir function, 63
discretization error, 356
diversification, 416
Docker containers

basics of, 45
benefits of, 50
building an Ubuntu and Python Docker

image, 46-50
Docker images versus Docker containers, 45

double-precision standard, 64
downsampling, 215
Droplets, 50, 55
DST (Daylight Saving Time), 663
dst() method, 663
DX (Derivatives analytiX) pricing library, 555
DX analytics package, 556, 617
dx.constant_short_rate class, 564, 617
dx.derivatives_portfolio, 626
dx.geometric_brownian_motion class, 582,

602, 617
dx.jump_diffusion class, 583, 617
dx.market_environment class, 565, 577, 617,

621
dx.square_root_diffusion class, 588, 617
dx.valuation_class class, 599
dx.valuation_mcs_american class, 611, 618
dx.valuation_mcs_european class, 602, 618
dx_frame.py module, 568
dx_simulation.py, 591
dynamic compiling, 276, 279
dynamic simulation, 356
dynamically typed languages, 62

E
early exercise premium, 382
Editor, 50
efficient frontier, 421, 424
efficient markets hypothesis (EMH), 399, 492
Eikon Data API, 25
elif control element, 79

else control element, 79
encapsulation, 148, 156
estimation of Greeks, 599
estimation problems, 448
Euler scheme, 357, 360, 583
European options, 375, 600-607, 673-676
eval() method, 142
event-based backtesting, 537
ewma_cy() function, 307
ewma_nb() function, 307
ewma_py() function, 306
Excel files, I/O with pandas, 251
.executemany() method, 246
execution time, estimating for loops, 276
expected portfolio return, 418
expected portfolio variance, 418
exponentially weighted moving average

(EWMA)
Cython implementation, 307
equation for, 304
Numba implementation, 307
Python implementation, 305

F
fat tails, 385, 413
feature transforms, 457
Fibonacci numbers, 286-289
fib_rec_py1() function, 286
filter() function, 80
finance

AI-first finance, 28
data-driven, 24
role of Python in, 14-24
role of technology in, 9-14

financial algorithms (see also algorithms; auto‐
mated trading; trading strategies)
Black-Scholes-Merton (BSM), 14, 299, 353,

356, 369, 673-676
Cox, Ross, and Rubinstein pricing model,

294, 359
first-best versus best solutions, 308
Least-Squares Monte Carlo (LSM), 381, 608
online algorithm, 544
simulation of financial models, 571-592
support vector machine (SVM), 29, 460

financial and data analytics
challenges of, 13
definition of, 13
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selecting appropriate hardware architecture,
273

write once, retrieve multiple times, 267
financial indicators, 217
financial instruments

custom modeling using Python classes,
154-159

symbols for (RICs), 209
financial studies, 217
financial theory, 398
financial time series data

changes over time, 212-215
correlation analysis using pandas, 222-227
data import using pandas, 206-209
definition and examples of, 205
high frequency data using pandas, 228
package imports and customizations, 206
recursive pandas algorithms for, 304-308
resampling, 215
rolling statistics using pandas, 217-222
statistical analysis of real-world data,

409-415
summary statistics using pandas, 210-212
tools for, 205

find_MAP() function, 432
first in, first out (FIFO) principle, 235
first-best solution, 308
fixed Gaussian quadrature, 336
flash trading, 12
floats, 63
flow control, 68
for loops, 78
foresight bias, avoiding, 217
format() function, 71
frequency approach, 501-503
frequency distribution, 631
full truncation, 360
functional programming, 80
Fundamental Theorem of Asset Pricing,

558-560
FXCM trading platform

getting started, 469
retrieving prepackaged historical data

candles data, 472
historical market price data sets, 469
tick data, 470

risk disclaimer, 468
working with the API

account information, 480

candles data, 475
initial steps, 474
placing orders, 478
streaming data, 477

fxcmpy package, 469

G
Gaussian mixture, 444, 447
Gaussian Naive Bayes (GNB), 449, 504
gbm_mcs_dyna() function, 377
gbm_mcs_stat() function, 376
generate_paths() method, 580
generate_payoff() method, 600
generate_time_grid() method, 574
generic simulation class, 574-577
generic valuation class, 596-600
gen_paths() function, 399
geometric Brownian motion, 356, 399, 577-582
get_info() method, 619
get_instrument_values() method, 575
get_price() method, 156
get_year_deltas() function, 562
graphs and charts (see data visualization)
Greeks, estimation of, 599
Greenwich Mean Time (GMT), 662
GroupBy operations, 130

H
hard disk drives (HDDs), 231
HDF5 database standard, 252, 264
Heston stochastic volatility model, 365
hidden layers, 454
high frequency data, 228
histograms, 186, 225
hit ratio, 500
hybrid disk drives, 231

I
idioms and paradigms, 308
IEEE 754, 64
if control element, 79
immutable objects, 76
import this command, 4
importing, definition of, 6
index() method, 76
info() function, 123, 211
inheritance, 147
input/output (I/O) operations
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compatibility issues, 236
role in financial analyses, 231
with pandas

from SQL to pandas, 247
working with CSV files, 250
working with Excel files, 251
working with SQL databases, 245

with PyTables
out-of-memory computations, 264
working with arrays, 262
working with compressed tables, 260
working with tables, 253

with Python
reading and writing text files, 236
working with SQL databases, 239
writing and reading NumPy arrays, 242
writing objects to disk, 232

with TsTables
data retrieval, 270
data storage, 269
sample data, 267

instance attributes, 145
instantiation, in object-oriented programming,

146
integers, 62, 149
integrated development environments (IDEs), 6
integration

integration by simulation, 337
integration interval, 335
numerical integration, 336
package imports and customizations, 334
use cases for, 334

interactive 2D plotting
basic plots, 195-199
financial plots, 199-203
packages for, 195

interpolation technique
basic idea of, 324
linear splines interpolation, 324
potential drawbacks of, 328
sci.splrep() and sci.splev() functions, 325

IPython
benefits and history of, 6
exiting, 48
GBM simulation class, 580
installing, 39
interactive data analytics and, 19
tab completion capabilities, 62
with Python 2.7 syntax, 42

is_prime() function, 283, 285
is_prime_cy2() function, 285
is_prime_nb() function, 285
iterative algorithms, 287

J
joining, using pandas, 137
jump diffusion, 369, 582-586
Jupyter

downloading, xvi
Jupyter Notebook

basics of, 50
configuration file, 52
history of, 6
installation script, 53
security measures, 53

K
k-means clustering algorithm, 444, 446,

499-501
Kelly criterion

for stocks and indices, 527-532
in binomial settings, 522-526

kernel density estimator (KDE), 225
key-value stores, 81
keyword module, 66
kurtosis test, 405

L
lambda functions, 80
LaTeX typesetting, 190, 339
Least-Squares Monte Carlo (LSM), 381, 608
least-squares regression, 321
left join, 137
leverage effect, 365
linear regression, 314
linear splines interpolation, 324
list comprehensions, 79
lists

constructing arrays with, 86
defining, 76
expanding and reducing, 77
looping over, 79
in market environment, 565
in object-oriented programming, 150
operations and methods, 78

LLVM (low level virtual machine), 279
log returns, calculating, 214, 224
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log-normal distribution, 354, 399
logical operators, 67
logistic regression (LR), 451, 504
longest drawdown period, 540
Longstaff-Schwartz model, 608
loops

Cython, 280
estimating execution time, 276
Numba, 279
NumPy, 278
Python, 277

loss level, 388

M
machine learning (ML)

adoption of in financial industry, 28
basics of, 398
packages for, 444
supervised learning, 448-461
types covered, 444
unsupervised learning, 444-447

map() function, 80
market environments, 565, 574
market-based valuation

model calibration, 641-650
options data, 638-640
Python code for, 654

Markov chain Monte Carlo (MCMC) sampling,
432, 437

Markov property, 356
Markowitz, Harry, 397, 415
martingale approach, 560
martingale measure, 375, 558, 578
mathematical tools

adoption of applied mathematics in finan‐
cial industry, 311

approximation, 312-328
convex optimization, 328-334
integration, 334-337
mathematics and Python syntax, 18
symbolic computation, 337-343

matplotlib
basics of, 8
benefits of, 167
boxplot generation using, 188
date-time information, 667
histogram generation using, 186, 225
matplotlib gallery, 189
NumPy data structures and, 171

pandas wrapper around, 126
scatter plot generation using, 184, 246
static 2D plotting using, 168-191

maximization of long-term wealth, 522
maximization of the Sharpe ratio, 421
maximum drawdown, 540
McKinney, Wes, 205
mcs_pi_py() function, 292
mcs_simulation_cy() function, 302
mcs_simulation_nb() function, 302
mcs_simulation_np() function, 301
mcs_simulation_py() function, 300
mean return, 398
mean() method, 129
mean-reverting processes, 359
mean-squared error (MSE), 646
mean-variance portfolio selection, 420
memory layout, 110
memoryless process, 356
merging, using pandas, 139
methods, in object-oriented programming, 145
Miniconda, 35
minimization function, 421
minimization of portfolio variance, 423
minimize() function, 421
min_func_sharpe() function, 423
ML-based trading strategy

optimal leverage, 537
overview of, 532
persisting model object, 543
risk analysis, 539-543
vectorized backtesting, 533-537

MLPClassifier algorithm class, 454
Modern Portfolio Theory (MPT), 415 (see also

portfolio optimization)
modularization, 147, 617
moment matching, 374, 573
Monte Carlo simulation, 14, 290, 299-304, 337,

352, 375
multiplication (*) operator, 150, 161
multiprocessing module, 276, 285, 303
mutable objects, 77

N
noisy data, 319
nonredundancy, 148
norm.pdf() function, 403
normal distribution, 398
normal log returns, 399
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normality tests
benchmark case, 399-409
real-world data, 409-415
role of in finance, 397, 398
skewness, kurtosis, and normality, 405

normality_tests() function, 405
normalization, 214
normalized price data, 442
normaltest(), 405
now() function, 662
np.allclose() function, 234
np.arange() function, 242, 666
np.concatenate() function, 373
np.dot() function, 419
np.exp() function, 215
np.lin space() function, 312
np.meshgrid() function, 192
np.polyfit(), 313, 325
np.polyval(), 313, 325
np.sum() function, 142
npr.lognormal() function, 354
npr.standard_normal() function, 354
Numba

binomial trees using, 297
exponentially weighted moving average

(EWMA), 307
looping in, 279
Monte Carlo simulation using, 302
potential drawbacks of, 279
prime number algorithm, 283

numerical integration, 336
NumPy

basics of, 8, 85
binomial trees using, 295
data structures covered, 85
date-time information, 665-667
datetime64 information, 667
handling arrays of data with Python, 86-90
looping in, 278
Monte Carlo simulation using, 301
regular NumPy arrays

Boolean arrays, 101
built-in methods, 91
mathematical operations, 92
metainformation, 97
multiple dimensions, 94
NumPy dtype objects, 97
numpy.ndarray class, 90, 151, 170
reshaping and resizing, 98

speed comparison, 103
universal functions, 92

structured NumPy arrays, 105
universal functions applied to pandas, 126
vectorization of code, 106-112
writing and reading NumPy arrays, 242

numpy.random subpackage, 346, 572
NUTS() function, 432

O
object relational mappers, 239
object-oriented programming (OOP)

benefits and drawbacks of, 145
dx.derivatives_portfolio class, 626
example class implementation, 146
features of, 147
Python classes, 154-159
Python data model, 159-163
Python objects, 149-154
terminology used in, 145
Vector class, 163

objects, in object-oriented programming, 145
online algorithm, 544
OpenSSL, 51
optimal decision step, 609
optimal fraction f *, 523
optimal stopping problem, 380, 608
option pricing theory, 399
opts object, 422
ordinary least-squares (OLS) regression, 226,

494-498
out-of-memory computations, 264
overfitting, 491

P
package managers

basics of, 34
conda basic operations, 37-41
Miniconda installation, 35

pandas
basic analytics, 123-126
basic visualization, 126
basics of, 8
benefits of, 113
calculating changes over time using,

212-215
complex selection, 132-135
concatenation, 135
correlation analysis using, 222-227
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data formats supported, 244
data structures covered, 113
DataFrame class, 114-123, 152
date-time information, 668-670
development of, 205
error tolerance of, 126
GroupBy operations, 130
handling high frequency data using, 228
import-export functions and methods, 245
importing financial data using, 206-209
joining, 137
merging, 139
multiple options provided by, 143
NumPy universal functions and, 126
performance aspects, 141
recursive function implementations,

304-308
rolling statistics using, 218
Series class, 128
summary statistics using, 210-212
working with CSV files in, 250
working with Excel files in, 251
working with SQL databases in, 245

paradigms and idioms, 308
parallel processing, 285
parallelization, 303, 308
parameters, in object-oriented programming,

146
pct_change() function, 213
pd.concat() function, 136
pd.date_range() function, 668
pd.read_csv() function, 206, 245, 251
percentage change, calculating, 213
perfect foresight, 217
performance Python

algorithms, 281-293
approaches to speed up tasks, 275, 308
binomial trees, 294-298
ensuring high performance, 21
loops, 276-281
Monte Carlo simulation, 299-304
recursive pandas algorithms, 304-308
supposed Python shortcomings, 275

pi (π), 290
pickle.dump() function, 233
pickle.load() function, 233
plot() method, 126, 129
plotly

basic plots, 195

benefits of, 167, 195
Getting Started with Plotly for Python

guide, 195
local or remote rendering, 195
plotting types available, 198

plot_option_stats() function, 605
plt.axis() function, 173
plt.boxplot() function, 188
plt.hist() function, 186
plt.legend() function, 177
plt.plot() function, 169, 177
plt.plot_surface() function, 193
plt.scatter() function, 184
plt.setp() funtion, 189
plt.subplots() function, 181
plt.title() function, 174
plt.xlabel() function, 174
plt.xlim() function, 173
plt.ylabel() function, 174
plt.ylim() function, 173
Poisson distribution, 351
polymorphism, 148
portfolio optimization

basic theory behind, 417
capital market line, 425
efficient frontier, 424
minimal risk through diversification, 416
normally distributed returns and, 415
optimal portfolios, 421
pioneering work of Harry Markowitz, 397

portfolio theory, 398, 415
portfolio valuation

derivatives portfolios
class to model, 622-626
use cases for, 626-633

derivatives positions
class to model, 618
use cases for, 620

wrapper module for, 634
port_ret() function, 420
port_vol() function, 420
present_value() method, 599
price movements, predicting direction of, 504
pricing library, 555
prime numbers

definition of, 282
multiprocessing module and, 285
testing for with Cython, 284
testing for with Numba, 283
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testing for with Python, 282
print() function, 71
print_statistics() function, 355, 402
private instance attributes, 157
probability density function (PDF), 403
probability of default, 388
pseudo-code, 18
pseudo-random numbers, 346, 372
put options, 375
PyMC3, 430
PyTables

basics of, 8
benefits of, 252
out-of-memory computations, 264
working with arrays, 262
working with compressed tables, 260
working with tables, 253

Python data model
benefits of, 163
example model implementation, 159-163
tasks and constructs supported by, 159

Python data structures
built-in structures, 75
control structures, 78
dicts, 81, 235
functional programming, 80
lists, 76, 150
sets, 82
structures covered, 61
tuples, 75

Python data types
Booleans, 66
dynamically versus statically typed lan‐

guages, 62
floats, 63
integers, 62, 149
printing and string replacements, 71
regular expressions and, 74
strings, 69
types covered, 61

Python Enhancement Proposal 20, 4
Python for Algorithmic Trading certificate pro‐

gram, xv
Python infrastructure

cloud instances, 50-56
Docker containers, 45-50
package managers, 35-41
tools and strategies available, 34
version selection and deployment, 33

virtual environment managers, 41-44
Python programming language (see also object-

oriented programming)
adoption of in financial industry, xiii
benefits of, 18
ecosystem for, 6, 308
efficiency and productivity through, 18-23
ensuring high performance, 21
executive summary and features, 3
from prototyping to production, 23
history of, 5
scientific stack, 8
syntax, 4, 14-18
user spectrum, 7

Python Quant Platform, xiv
The Python Quants GmbH, 556
Python Standard Library, 6
pytz module, 664

Q
Quant Platform, 556
quantile-quantile (QQ) plots, 404

R
rand() function, 346
random access memory (RAM), 231
random numbers

generating random number to different dis‐
tribution laws, 349

normal distribution in finance, 350
numpy.random subpackage for, 346
simple random number generation, 347
standard normally distributed, 572
visualization of generation, 348
visualization of random number generation

from various distributions, 351
random variables, 353
random walk hypothesis (RWH), 440, 491-494
randomized train-test split, 511
range() method, 78
re module, 74
real-time analytics, 13
real-time data, 477
real-time economy, 13
recombining trees, 294
recursive function implementations, 286,

304-308
reduce() function, 80
regression technique
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individual basis functions, 317
least-squares approach, 321
linear regression, 314
monomials as basis functions, 313
multiple dimensions and, 321
noisy data and, 319
np.polyval() function, 314
ordinary least-squares (OLS) regression,

226, 494-498
parameters of polyfit() function, 314
task of, 313
unsorted data, 320

regular expressions, 74
relational databases, 239
relative return data, 442
Relative Strength Index (RSI), 199
relevant markets, 622
replace() method, 70
resampling, 215
reusability, 148
Reuters Instrument Codes (RICs), 209
risk management

automated trading, 547
credit valuation adjustments (CVA), 388
FXCM trading platform, 468
minimizing portfolio risk, 416
valuation classes for, 595
value-at-risk (VaR), 383

risk-neutral discounting
constant short rate, 563
modeling and handling dates, 560

risk-neutral investors, 523
risk-neutral valuation approach, 560
riskless assets, 426
rolling statistics

deriving using pandas, 218
financial time series example, 217
technical analysis example, 220

Romberg integration, 336
RSA public and private keys, 51

S
sample() function, 432
sampling error, 356
scaling out versus scaling up, 273
scatter plots, 184, 246
scatter_matrix() function, 225
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